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Channel-facilitated membrane transport: Average lifetimes in the channel
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The transport of many solutes across biological membranes happens with the help of specialized
proteins that form water-filled channels traversing the membranes. Recent experimental and
theoretical work demonstrates that solute translocation can be facilitated by attractive interactions
between the channel and penetrating particle. Here we consider an important aspect of
channel-facilitated passive transport, the average lifetimes in the channel for those particles that
traverse the channel and those that return, as well as the total average lifetime of the particle in the
channel. Exact expressions for the average lifetimes are derived in the framework of a
one-dimensional diffusion model. The validity of our one-dimensional analysis is verified by good
agreement of the theoretical predictions with the average lifetimes found in three-dimensional
Brownian dynamics simulations.
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I. INTRODUCTION probabilities are found in our previous stutin the present
paper we derive expressions for the average lifetimes in the
It is well documented now that membrane transport ofchannel for translocating and returning particles, which will
metabolites and other solutes larger than monoatomic ions ise called average return and translocation times, respec-
assisted and regulated by specialized membrane proteifigely. These lifetimes are conditional because they are cal-
forming water-filled channels. The basic mechanisms of thigylated for the two subsets of all possible realizations of the
channel-facilitated transport are interesting from both practirandom process. The total average lifetime of the particle in
cal and conceptual points of view. As a specific example, Wehe channel is obtained as the weighted sum of the condi-
mention recent studies of antibiotic transport through bactetipnal lifetimes, in which the weight factors are the translo-
rial channel&? where progress in understanding of the Per-cation and return probabilities derived in Ref. 6.
meation mechanism may lead to the development of more g jjjustrate some qualitative features of the average life-
efficient drugs. Conceptually, although the constructive rolgjyes predicted by the general theory, we study a special case
of attractive interactions betvx_/een permeating particles ang, \which a symmetric square-well potential occupies some
the channel has been appreciated for many yedrs,com- _ part of the channel. We find that both the total average life-
prehensive theory capable of offering a clear understandlngme in the channel and the average return time are mono-
and a rgliable quanti_tativ_e description of channeI—faciIitateqonica”y increasing functions of the well depth and length.
metabolite transport is sill to be developed. Such a behavior agrees with general intuitive ideas. In con-

A partlt(;]Ie that ent.((ajrs t?(tahchanneL either rheturn_? antd esfrast, the dependence of the average translocation time on the
capes on the same side of Ineé memborane wnere It enters gk, length is somewhat counterintuitive. This time increases
traverses the channel and escapes on the opposite side of t

- : : With the length when the length is small, reaches a maximum
membrane. Key quantities that characterize this process ar .

. o . -when the well occupies half of the channel, and then starts to
translocation and return probabilities and average lifetimes in

the channel of translocating and returning particles, as Weﬁiecrease. Concering the dependence on the well depth, the

o S average translocation time monotonically increases with
as the total average lifetime of the particle in the channel. .
These quantities are building blocks of the theory of thedepth._The deeper the we_ll, th_e more pronounced is turnover
channel-facilitated transport. behavior of the tra'm'slocatlon t'|me.

General expressions for the translocation and return Another surprising result is that the average transloca-

tion time does not depend on the direction in which the par-
5 ticle translocates. This statement is true for the arbitrary de-
Author to whom correspondence should be addressed. Permanent ads ; ; ;
dress: Karpov Institute of Physical Chemistry, Vorontsovo Pole 10, Mosa-ﬂend(:m_Ce Qf the part!(:_le pOter.]tlz.il energy In the Chann(.el’. as
cow, K-64, 103064 Russia. Fax(301) 402-9462. Electronic mail: SNOWN in Fig. 1. Specifically, this includes the case of a finite
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U(x) 4 where 8= (kgT) !, andkg and T are the Boltzmann con-
stant and absolute temperature. The propagator satisfies the
initial condition

»

AU G(X,0[Xg) = 8(X—Xg). (2.2

Radiation boundary conditions imposed at the end points
=0, x=L describe the escape of the particle from the chan-
nel:

i[GeBU(X)]
0 \/ L X X

J
_ a[GeﬂU( )]

v

Ko
=0 g8U0O

x=0
(2.3

Ke
—_ L gBUL)
. D(L)e G(L,t|xo),

Bulk Channel Bulk

where the rate constaritg andk,; characterize the efficiency
o _ _ _ of the escape. Two limiting cases k¥« andk=0 corre-
FIG. 1. Schematic view of the particle potential enelgfx) in the mem- spond to perfectly absorbing and reflecting end points, re-
brane channel. . L
spectively. In what follow,,k, #0, because there is no
translocation in both cases.
Escape from the channel is described by the probability
AU=#0 in Fig. 1, where the particle has to go either up orfluxes through the end points

down the energy gradient depending on the direction of the

translocation. fo(t|x0) =koG(Ot[x0), fL(t[X0) =k G(L,t|x0). (2.4
The outline of the paper is as follows. After the model is . _ . . e

formulated in the following section, we derive a general SO_TEelr Slljmf Iti the ;:_rolbgbl_ltl_ty"ditls!ty for the lifetime in the

lutions in Sec. lll. The case of the symmetric square—wellC annel ot the particie nitially ato

potent!al is dlscu.ssed.m det.all in Sec. IV. Three-@mensmnal @ (t|x0) = Fot|xo) + fL(t|Xo)- (2.5

Brownian dynamics simulations performed for this potential

to test our one-dimensional theory are also reported in thighe total probabilities of escape through the left and right

section. The simulation results agree well with the theoreticaénd points, denoted biyy(x,) andP (o), are given by

predictions. Section V contains a brief summary and con-

cluding remarks. In the Appendix we demonstrate that the I _

translocation time does not depend on the direction of trans- Polxo)= 0 fo(tlxo)dt,  Pu(xo)= 0 fLltlxo)dt.

location in the framework of a simple two-site model of the (2.6)

channel.
One can see that

©

IIl. MODEL AND DEFINITIONS Po(Xg) + PL(Xq) = fo o(t[xg)dt=1. (2.7

Consider a particle that enters a cylindrical membrane . . _ _
channel. The particle either traverses the channel or escapes | € Probability densities for the lifetimes in the channel
on the same side of the membrane, where it has entered. Ofp condition that the particle, initially &, escape through
goal is to calculate the average time that the particle spend§€ end points ak=0 orx=L are, respectively, defined by
in the channel in both cases as well as its total average life- 1
time in the channel. eo(t|x) = Wfo(qxo),

Our derivation is based on an approximate treatment of 0170
the particle motion in the channel as one-dimensional diffu- 1 (2.8
sion along the channel axis. This model describes the inter- o (t|xg)= = f, (t|Xo).
action of the particle with the channel in terms of the poten- PL(Xo)
tial of mean forceU(x), which acts on the particle at the
pointx (Fig. 1), and position-dependent diffusion coefficient
D(x). The propagator or Green functi@(x,t|x,), which is
the probability density to find the particle at poinat timet

The conditional average lifetimesy(x,) and t,(X,) are
given by

o © 1 0
on condition that the particle was »§ at t=0, satisfies the tO(XO):f to(t|Xo)dt= P—f tfo(t|xo)dt
diffusion (Smoluchowski equation 0 o(Xo) Jo
G 9 9 Ko f ”
= —BUX)__ U(x) = tG(0,t|xq)dt,
= x| De S [Ge L, (2.) Potxa) Jo (0it[xo)
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_ o which are functions of the particle initial position. These
t(Xo) = fo toL(t|xo)dt times satisfy the equation that can be derived from the back-
ward equation for the propagator considered as a function of
_ PL(le) JO tf, (t|xo)dt 29 @
K - @Ieﬁu(xo)i{ D(Xo)e*ﬁU(xo)&_G . (3.2
== f tG(L,t|xo)dt. at IXo 9Xo
PL(Xo) Jo

The initial condition is given in Eq(2.2), and the boundary
Using the definitions in Eqg2.5) and(2.8), one can see that conditions are

@(t|X0) = @o(t|Xg) Po(Xo) + @ (t]X0) P (Xo). (2.10 G Ko
ﬁ = WG(X’HO)'
As a consequence, the average particle lifetime in the chan- Olxp=0
nel is (3.3
_ o _ _ aG k.
t(Xo)= Jo te(txo)dt=1to(Xo) Po(Xo) + tL(Xo) PL(Xo)- 9% . D(L) GOxtlL).
o=

(211 Using EQgs.(3.1)—(3.3), one can check thaty(xg) and
The average translocation and return times, which are (x,) satisfy

the average lifetimes in the channel of translocatiingand

returning (r) particles that enter the channel =0 and UG d —ﬁU(xO)dTovL(XO) B
Xo=L, are denoted by, (0), t,(0), t, (L), andt (L), re- e dxo D(xo)e dxo | —PoL(Xo),
spectively. These timeican be Wiitten in terms of the condi- (3.9
tional average lifetimes$y(Xp) andt, (Xg) introduced in Eg.
(2.9 as follows: with the boundary conditions
1, (0)=1,(0), t,(0)=to(0), dror(x0)|  _ ko )
- (2.12 dx |, _, D(O)™"
tu(L)=to(L), t(L)=t (L). B B (3.5
In what follows we derive expressions foy(X,) andt (Xg). B d7oL(Xo) ke

The relations in Eqs2.12 are then used to find the average dxo :L: D(L) 7o (L).

return and translocation times.

The functionsPy(xy) and P (X,) give the probabilities . . .
of two possible outcomes of the stochastic process. They ar-Ehe probabilitiesPy(xo) and P (xo) are derived in Ref. 6

called “splitting probabilities.” ~° Associated conditional and are given by
average lifetimedy(xg) andt (xg) are similar to, but not

e . e : : : L gBfu)
identical with, the conditional mean first-passage times dis- kol 1+ kLe*BAUf —dy
cussed in detail by Redner in Ref. 9. The difference between P _ xo DY)
these times lies in the boundary conditions at the ends of the o(Xo)= AU o [* efUly)
interval. To find conditional mean first-passage times one has kot+k e P2V +kok e’ Jo D(y) dy
to impose absorbing boundary conditions. Conditional aver- 3.6
age lifetimest(xg) andt, (xq) will be derived for radiation BU(Y) '
" - . . . Xp €
boundary conditions. This difference in the boundary condi- ke PAY| 1+ kof —dy}
tions is important because a diffusing particle cannot cross P (xg)= o D(y)
an absorbing boundary and, hence, cannot enter the channel. = 270"~ L efuly)
ko+ kLeiﬁAU"_ kokLeiﬁAUJ‘ —dy

o D(y)

ll. SOLUTION Here we have taket/(0)=0 and introduced the notation

AU=U(L) for the difference in the potential energies at the
channel ends$Fig. 1).

Solving Eq.(3.4), one can findry(xg) and 7 (X,) and
eventually the average return and translocation times defined
in Eq. (2.12. Surprisingly, we find that the average translo-
cation times in both directions coincide. For this reason we
7 (Xg) = fwth(t|x0)dt:kath(L,t|xo)dt, 3.1) have.intrcﬁuced a_unified_notat?on for the average transloca-

0 0 tion time, t,,(0)=t,(L)=t,, . It is given by

It is convenient to introduce the auxiliary timeg(xg)
and r (xo) defined by

'To(Xo): fo tfo(t|X0)dt:kofO tG(O,t|X0)dt,
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L X eﬁu(y) L e.BU(y)
f {1+ kof dy|| 1+ kLe*[’AUJ dy|e PY™dx
— == o o D(y) x D(y)
ty (0) =ty (L)=t,= ) (3.7
Ko+ kLe*ﬂAU+kokLe*BAUJ dy
o D(y)

At the moment we have no simple qualitative explanation for the direction independence of the average translocation time. In
the Appendix we derive a similar result for an asymmetric discrete two-site model of the channel. The analysis presented in the
Appendix suggests that the direction independence of the average translocation,{jfies t; (L), is a consequence of a
more general relation: namely, the direction independence of the probability density for the translocatiop, {ith@)
= ¢, (t|L). We cannot prove this general relation for an arbitrary asymmetric potential and position-dependent diffusion
coefficient.

In contrast to the average translocation time, the average return times are different and given by

- pu [P
1+ke” f dy| e P*™Mdx
_ fo L « D(y) Y
t,(0)= o[ oAU a0 o [ N (3.9
1+ke” f dy|| ko+k e~ +kok e J d
- o D(y) Y| ot o D(y) y}
L L eBYWY) 2 U0
1+Kk f dy| e #*™¥dx
_ fo °Jo D(y) y
t(L)= L efUy) oA o[- eBUY) (3.9
1+kj ——dy|| kot k e” +kok, €™ f d
°Jo Dy) VY] ot o D(y) y}

The average lifetimes in the channel for particles that _ _ L
enter through the opposite ends can be written in terms of the Kot (0) +k e #2Yt(L) = fo e PUMdx. (3.12
conditional average lifetimes and the translocation and return
probabilities for particles that enter the channek@t 0 and  The average times in Eg8.7)—(3.9) and(3.11) are the main
Xo=L. These probabilities, denoted &B,(0), P,(0), results of this paper. They are discussed in detail in the fol-
P, (L), andP,(L), respectively, are related to the splitting lowing section.
probabilities in Eq. (2.6) by P (0)=P_(0), Py(L)
=Po(L), P(0)=Po(0), andP,(L)=P_(L). Using these |v. DISCUSSION

notations we can writgcf. Eq. (2.1
ef. Eq. (2.11)] The general formulas for the average lifetimes derived

1(0)=t,(0)P,(0)+t, P, (0), above contain many parameters. To illustrate some features
o - B (3.10 of the behavior of these functions we now discuss several
t(L)=t,(L)P,(L)+t Py (L). cases in which the general formulas significantly simplify

. o ] ) and the number of parameters decreases. We consider a sym-
The translocation and return probabilities are derived in Refeatric case and assume tha U(x)=U(L—x), (b) the

6. Combining the expressions in E¢8.7)—-(3.9 with the it sion coefficient in the channel is a constafii{x)

correqunding results from Ref.[6r found from Eq.(3.6)], =const=Dy,,, and(c) the rate constants, andk, are equal
we obtain and are given by
L eBU(y) 4D
14k ef,BAUf dvle BUgx —Kk =k= —2
B L . D(y) y kO k|_ k na ’ (41)
t(0)= L ePUY)

d wherea is the channel radius aridl, is the particle diffusion

D(y) y constant in the bulk outside the membrane which in general

(3.1  may differ fromD¢,. This expression fok is derived and
tested against Brownian dynamics simulations in Ref. 10.

Ko+ k e PAY+ kok,_e‘[“”f
0

L X e.BU(y)
—BU(x)
— fo 1+k°fo D(y) dy|e dx According to assumptiofe), U(0)=U(L) and, henceAU
t(L)= L AU =0. In the symmetric case the two average return times are
Ko+ kLe"BAUJrkOkLe‘BAUJ’O Ty)dy equal and will be denoted by,=t,(0)=t,(L). The two

average lifetimes are also equal and will be denotect | by

One can check that the weighted sum of these lifetimes de=t(0)=t(L).
pends only orlJ(x) and does not depend @(x), kq, and The discussion is split into three pieces. First, we con-
k. : sider the case of no potential. Here the main focus is on the
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dependence of the average lifetimes on the geometric param- u?

eters of the channef andL, and the diffusion constants in — 1+u+—

the channel and in the bulk. In Sec. IVB we consider the  tuPu _ 6 @.7
case of a square-well potential that occupies the entire chan- t_rPr w? ' '
nel. This means that the particle undergoes isotropic diffu- 1+p+ 3

sion everywhere except at the channel boundaries where
there is a finite bias that draws the particle into the channelThe ratio increases from 0.5 to unity asdecreases from
Such a potential is a caricature of the potential typical forinfinity to zero. Thus, although the timeg andt, are quite
many channels. A broad potential well is required becausgjfferent for long channelg,,>t, , their contributions intd
the translocation probability in the absence of the well isy ¢ comparable:
vanishingly smalf In this subsection we study how the av-
erage lifetimes depend on the well depth. Finally, in Sec. — = - 1

. . trPr—_t ttrPtr__t- (48)
IV C we discuss the case of a square-well potential that oc-

3 L
cupies only part of the channel. The main focus of this sub-_, . = .
section is on the dependence of the lifetimes on the length o-Fh'S happens because the large titgeis multiplied by the

the well. Surprisingly, this dependence is honmonotonic fOISImaII iransl_(t)catlon probability while the return probability is
the average translocation time. close to unity.

B. Potential well occupies the entire channel

A. No potential well In this subsection, we consider a square-well potential

In the simplest case, whdu(x) =0, we have that occupies the entire channel

2 2 U(x)=—-UgH(X)H(L—Xx), (4.9
1+u+ sl 1+u+ i ; ; ;
_ KT Y whereU, is the well depthU,>0, andH(x) is the Heavi-
ty= o t= ST EIAY (4.2 s!de step function. The conditional lifetimes for this case are
given by
where 2
_ M
L mal KL L2 4LD, w3 B 1+ pe ot e 2
Fm—=———, u=—= = . : — rehY
k 4Db M DCh DChT ’7Ta.DCh ttr_ T€ 0 2+/.Le_'BUO (41@
In the most interesting case of a long and narrow channel 4
(u>1) the conditional lifetimes in Eq4.2) take the form )
— T L? — 7 malL 1+,LLe_'BU°+M—e_2ﬁU0
ttrz—: , trz—: . (44) T _ _.BU 3
6 6D, 3 12D, t,=re (4.12)

_ (1 e U0\ (2+ e U0y

As might be expected,ttr_is proportional to the ratio For long and narrow channelg 1) with deep wells that

L?/Dgy,. Itis interesting that, does not depend oB., and satisfy

depends only oD,,. Another interesting feature df is its

linear dependence on both the channel length and radius. BUo>Inp, (412
In the case of no potential the translocation and returrthese times are equal to one another and proportional to

probabilities are given By exp(BUyp):
1 1+u - — T malL
= = = g BUOI _ BUO

Ptr 2+/Jv1 r 2+M (45) ttr tr ze 8Dbe ’ (413
The average lifetime in this channel is as might be expected. Figure 2 shows thvandt_r ap-

L r mal proach their limiting behavior in Eq4.13. Relaxation to

t=trPr+tt,Ptr=§= D (4.6 quasiequilibrium in a deep potential well occurs much faster

b

than escape. This is why the lifetimes in E4.13 are inde-
It is interesting that, similar to, , t depends only o, and ~ pendent oD,. They depend only oDy, as the rate constant
not on D¢, and is proportional to the channel length andk (which determines the efficiency of the escape from the
radius. It is worth mentioning that this average lifetime is channel is proportional toDy, .
different from the average lifetime of a particle uniformly ~ The translocation and return probabilities for the case
distributed over the channel length, which is used to characvhen the well occupies the entire channel are giveh by
terize thermal fluctuations of the number of particles in the 1 1+ ue BYo
channel® This time depends on botb, and D, and is Py,
equal to (%/12D ) (1+ 37D nal2Dyl).

It is informative to consider the ratio of the two terms on Using these probabilities and the conditional lifetimes in
the right-hand side of Eq4.6): Egs.(4.10 and(4.11), one can find the average lifetime

“2vpe P P Tk e e 4.19
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FIG. 3. Square-well potential in E¢4.16).
0.1 T B P,=P,=0.5 in this limiting case. The ratio of these two
0 1 2 3 4 5 6 terms considered as a function of the well depth varies from
BY, 0.5 for Uy=0 to unity aspUy— .

FIG. 2. Dependencest, /7 and t, /7, the upper and lower solid curves,
respectively, as functions of the well depth for the square-well potentialC. Potential well occupies part of the channel

occupying the entire channel at=20. The timesti1r andt, are given in hi b . id .
Egs.(4.10 and(4.11). The dashed curve shows the asymptotic behavior of .m this subsection we consi .er a symmetric square po-
the ratio that follows from Eq(4.13. tential well of lengthl that occupies the central part of the

channel. In this case,
L—1 H(L+| it
X5 M) (4.19

_ whereU, is the well depthlU,>0. This potential is shown
The two terms of the sum are approximately equal for deepn Fig. 3. The average lifetime in the channel for returning
wells, whenBU >In u. This happens becaude=t; and particles is given by

- 1
:trPr+t"Ptr=§ rePYo, (4.15

Us Nurm, (4.17)
[1+u(1—N+re PUo)][2+ u(l—N+re PYo)]" '

t_f: TeB

where\ =1/L is the fraction of the channel occupied by the Num, =X+ (1—\)e A%+ u[A(1—\)+

well and
(1—2x+2)\%)e AYot \(1—\)e 2AY]

Num =X+ (1—X)e AY+ y[N(1—\) 2
Ladl )2 _ _ 2
T+ (1—21+20%)e Ao+ \(1—))e2AY0] TplBMITNTH2ASN) (120 AN
2 X e PYo+\(3—6)N+5\2)e 2AV0], (4.20
+ 5B N)2+2(1-N) (2— 4N +5)2)e AU TN e ]
The behavior ot;, as a function ofz is shown in Fig. 5 for
+A(9—18\+13\2)e 2AY0+6N%(1—\)e 3FYo], BUo=1, 2, and 3 foru=20. One can check that in the

4.18 limiting case of long and narrow channegl$ 1) with a deep

potential well (8U,>In 1) the average translocation time
has a maximum ax =1/2, i.e., when the well occupies ex-
actly one half of the channdl=L/2. The time at the maxi-
mum is given by

The plots in Fig. 4 show the behaviorafas a function ok

for BUy=1, 2, and 3 forw=20. As might be expected,
monotonically grows aa increases.

In contrast, the average translocation time is a nonmono- __ T

tonic function of\. This time is given by tilh=12=75€"" (4.21)
— Nu STy : :
t,, = reflo M, 4.19 The turnover behavior df,, considered as a function of

24 u(1—N+refYoy’ \ seems rather counterintuitive and deserves some explana-
tions. Theh dependence of the average translocation time is

where determined by a competition of two effectsfi) the increase
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It

0.0 0.2 0.4 0.6 0.8 10
A A

FIG. 4. Ratio oftﬁr in Eq. (4.17) to its value at\ =0 given in Eq.(4.2) as a FIG. 6. Ratio oft in Eq. (4.23 to its value at\ =0 given in Eq.(4.6) as a
function of the fraction of the channel occupied by the symmetric squarefunction of \, for w=20 and well depth38U,=1, 2, and 3(from bottom to
potential well,\, for =20 and well deptiBU,=1, 2, and 3(from bottom top).

to top).

1

. . . . Py= — ,
of the average time spent by the particle in the well with U 24+ u(1— N+ e PYo)
and (i) the decrease in the probability for the particle that

(ii) P y b : 1+ 1(1— A +re FYo)
has escaped from the well to come back. The first effect is p — —Z= -
more important at smalk and leads to an increase in the 2+ pu(l=N+re PHo)
average translocation time. The second effect starts to domizsing these probabilities and the conditional average life-
nate ask approaches unity, leading to a decrease in the avimes in Eqs.(4.17) and (4.19, one can find the uncondi-
erage translocation time. Thus, whervaries from zero to  tjonal average lifetime by
unity, the average translocation time first grows and reaches

. s . S r
a rr_1axmum and then decregses_.Ths is a qualitative expla t=trPr+ttrPtrZE(l—?\H\eBUO)- 4.23
nation of the turnover behavior df; .

The translocation and return probabilities for the case ofhe final expression for [as well as the results in Eqet.6)
a square potential well that occupies the fractioof the 544,157 can be easily obtained from the relation in Eq.
channel are given By (3.12). The dependence of this time aris presented in Fig.
6, which shows that monotonically grows as increases, as
one might expect on the basis of general intuitive ideas.

10 , : . : : : . : : To test our theory we performed three-dimensional
Brownian dynamics simulations for the channel with the di-
mensionless radiua=5.5 and lengthL=200. We takeD,,
=D.,=0.5 and the square-well potential that is symmetric
about the channel center. Figures 7, 8, and 9 show the aver-
age translocation and return times as well as the average
particle lifetime in the channet,,, t,, andt, respectively,
as functions of the well deptBU, for three values of well
lengthl=120, 176, and 198. It is seen that theoretical pre-
dictions agree well with the simulation results.

(4.22

V. CONCLUDING REMARKS

The main results of this paper are the expressions in Egs.
(3.7—(3.9 for the average conditional lifetimes of the par-
by ticle in the channel, as well as in the expressions in Eq.
FIG. 5. Nonmonotonic dependence of the average translocation time on thga&ll) for the total(unconditional average 'Ilfetlrnes for par-
fraction of the channel occupied by the well. The curves show the ratT'p of ticles _that enter the Chann_el f_rom opposite sides. Thes_e ex-
in Eq. (4.19 to its value at\=0 given in Eq.(4.2) as a function of\, for pressions show how the lifetimes depend on the particle—

n=20 and well depthBU,=1, 2, and 3(from bottom to top. channel interaction, which is described in terms of the
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FIG. 7. Average translocation tir’rﬁ, as a function of the well depth for FIG. 9. Average Iifgtim_et_as a function of well depth for the same values of
well length | =120, 176, and 198from top to bottorh. The curves are the well length as in Fig. 8. The curves are drawn according to(£83).

drawn according to Eq4.19.

potential of mean forcelJ(x), and the position-dependent ) o ) ) )
diffusion coefficient of the particle in the chann®l,(x). particle lifetime in the channel is much smaller than the time

The average lifetimes are important for understandin?€Ween successive attempts, the channel is empty most of
channel functioning, especially in the case when particle$he time. It is clear that an optimal regime for channel op-
cannot pass each other, so that one partide blocks the Chaﬂ[ation is realized when the two times are close to each other.
nel for the passage of others. In the simplest model this There is another important parameter that determines the
blockage makes it impossible for another particle to enter thefficiency of the channel operation: the particle transloca-
channel until the first particle escapes. The efficiency of theion probability. In our previous studwe have shown that
channel operationthe metabolite flux facilitated by the this probability increases with the depth of the potential well.
channel is determined by the interplay between the particleAccording to Egs.(3.11) of the present paper, the average
lifetime in the channel and the time between successive atifetime also increases with this parameter. Thus, when the
tempts to enter the channel made by particles in the bulk. lfvell is deep enough so that the translocation probability is
the former time is much larger than the latter, most of the|ose to its maximum value 0.5, the particle lifetime in the
attempts are unsuccessful because the channel is blockgfannel is large. We will address the question of optimal
most of the time. In the opposite limiting case when the.gnnel functioning in a forthcoming paper.

The theory developed above assumes that the channel
dynamics is much faster than that of the particle. In reality,
this is not necessarily the case. One can easily imagine that
characteristic time scales associated with the particle and
channel dynamics are comparable. If so, one has to treat both
dynamics on an equal footing, which leads to a much more
complicated multidimensional problem. This general prob-
lem reduces to our one-dimensional model by the adiabatic
elimination of fast variables, which is justified on condition
that the channel dynamics are fast enough.

This paper deals with neutral solutes. A similar set of
questions arises in connection with the ion passage through
membrane channef$ These questions were addressed in re-

] cent paperé where the Coulomb interaction of ions and
I TR T T T charges on the channel walls was treated in the framework of
the Poisson—Boltzmann approach. The analysis in Ref. 12
By, was based on the one-dimensional Fokker—Planck equation
_ in phase space. We believe that our approach, which makes
FIG. 8. Average return timg, as a function of the well depth for WeIIIength use of the diffusion equation, can be applied to ion perme-
=120, 176, and 19&rom bottom to top. The curves are drawn according . . . .
gtion if the above-mentioned reduction to the one-

to Eq.(4.17). Note that the order of the curves is reversed compared to tha - ) e - o
in Fig. 7. dimensional description is justified.

Average return time
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The average translocation time for the particle that starts
from site 1 is

APPENDIX: PROBABILITY DENSITY OF THE
TRANSLOCATION TIME FOR AN ASYMMETRIC TWO-

SITE CHANNEL T (1= dog(s|1)
The kinetic scheme representing an asymmetric two-site " ds s=0
channel is
_ Ky offtKi+Ka orrt Ko (A7)
Kioff 1 kg 2 K2or (K1 ottt Ke) (Ko op1t ko) —keky
- == = (A1) o y
ko The expression in EqA6) shows that the probability den-

where the rate constanks and k, characterize transitions Slty(t|f ?;:the (Ilrg;ISIXZagogor:'Srgeulesncilr?ﬁgogve'?:egi?;ne;g_
between the two sites of the channel, while the rate constanf&'"’ —Pu ’ d Lo 9

. . ___cation time does not depend on the direction of the translo-
Ky ofs @and k, o¢; characterize escape from the channel into

the bulk on the two sides of the membrane. Consider a pa€ation alsot(1)=t:(2). .
ticle that enters the channel from the left at titre0. The Similar but more cumbersome calculations for an asym-

propagator, which is the probability to find this particle at theMetric three-site channel show that the probability density of
time t on sitei, G;y(t), i =1,2, satisfies the translocation time is direction independent for this chan-

nel also.
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